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Single molecule force spectroscopy has given experimental access to the mechanical properties of protein molecules.
Typically, less than 1% of the experimental recordings reflect true single molecule events due to abundant surface and
multiple-molecule interactions. A key issue in single molecule force spectroscopy is thus to identify the characteristic
mechanical ‘‘fingerprint’’ of a specific protein in noisy data sets. Here, we present an objective pattern recognition algorithm
that is able to identify fingerprints in such noisy data sets. [DOI: 10.1143/JJAP.46.5540]
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One of the most fundamental and challenging problems in
molecular biophysics is understanding how proteins fold into
complex three dimensional structures. The folding process
of proteins is generally described as diffusion in a high
dimensional energy-landscape.1) Recent advances in single
molecule force spectroscopy have made it possible to
explore the energy landscape of single protein molecules
along well-defined reaction coordinates by applying a
mechanical force.2–7) Several aspects make mechanical
experiments with single molecules a valuable tool for
protein science. A large fraction of the proteins in our body
have structural and thus also mechanical function.8) Single-
molecule force experiments can help to investigate the
mechanical function of proteins. But, beyond physiology,
force as structural control parameter also offers attractive
possibilities for exploring the energy landscape of biomo-
lecule folding.

Single molecule force spectroscopy experiments are
challenging and due to abundant surface effects and
interactions with multiple molecules generally less than
1% of the experimental recordings reflect true single
molecule manipulation. A key issue in single-molecule
force spectroscopy is to identify the characteristic mechan-
ical ‘‘fingerprint’’ of a specific protein. One strategy to obtain
a clear selection criterion is the use of modular proteins
(polyproteins). Like in the case of the muscle protein titin
[see Fig. 1(a)], stretching a chain of identical protein
subunits results typically a characteristic and repetitive
sawtooth pattern. Each peak reflects the sudden breakdown
of a folded protein domain in the stretched chain, followed
by stretching of the lengthened polyprotein. The distance
between peaks is related to the number of amino acids that
unravel in each unfolding event. Only curves exhibiting such
sawtooth patterns are then used for data analysis. However,
the vast majority of protein molecules do not exhibit
modular structure. Recombinant protocols have been devel-
oped to construct artificially polyprotein chains.9,10) Cysteine
engineering can be employed to generate polyproteins with
different linking geometries.11–14) Alternatively, it may be
advantageous to embed a single molecule of the protein of
interest into another modular protein chain to create mo-
lecular handles that enable manipulation of the protein of
interest [see Fig. 1(b)]. An example of a force-extension
trace obtained with such a modular fusion protein is shown

in Fig. 1(b). The protein was engineered such that a single
green fluorescent protein (GFP) molecule is flanked by
several modules of Dictyostelium discoideum filamin
(DdFLN domains 1 to 5).5) The section marked in green in
the force extension trace reflects the mechanical signature
arising from force-induced unfolding of the single GFP
molecule, while the red sections arise from unfolding of the
handle domains. The fusion-protein strategy enables control
upon time and location of the desired unfolding event in
force extension traces, but complicates acquisition of
sufficient data. Another concern is the identification of the
mechanical signature arising from stretching of the protein
of interest. Here we introduce a pattern recognition
algorithm for the evaluation of molecular fingerprints within
noisy experimental data.

We assume a function gðxÞ to represent a mechanical
pattern of interest, while the function f ðxÞ shall be tested for
sections that exhibit similarity with the pattern gðxÞ. We
make use of cross correlations as functions of a displacement
variable u to develop such a testing procedure.

Kg; f ðuÞ ¼
Z b

0

gðxÞ � f ðxþ uÞ dx ð1Þ

The number b in eq. (1) denotes the width of the pattern
gðxÞ. We seek a recognition function Cg; f ðuÞ which equals 1
for displacements u leading to identical matching with the

Fig. 1. (a) Typical force-extension trace obtained from stretching single

titin polyprotein molecules. Each peach reflects force-induced unfolding

of a single titin module in the polyprotein. (b) Typical force-extension

trace measured on a chimeric protein containing a single GFP domain

flanked by domains of the dictyostelium discoideum actin crosslinking

protein filamin [DdFln(1–5)]. The section marked in green reflects the

mechanical signature due to force-induced unfolding of GFP.5) The

section marked in yellow corresponds to unfolding of a special DdFLN

domain exhibiting a stable unfolding intermediate as it has been described

before.19)
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pattern gðxÞ and otherwise is always smaller than 1. Thus, if
the function f ðxÞ contains exactly the pattern gðxÞ at a certain
displacement u, the condition in eq. (2) has to be fulfilled.

lim
f!g

Z b

0

gðxÞ � f ðxþ uÞ dxZ b

0

gðxÞ � gðxÞ dx
¼ 1 ð2Þ

This condition motivates to introduce a displacement-
dependent (u-dependent) normalization for the cross-corre-
lation function Kg; f . The inequality of Cauchy–Schwartz can
be used for such a purpose:�Z b

0

gðxÞ � f ðxþ uÞ dx
�2

Z b

0

g2ðxÞ dx �
Z b

0

f 2ðxþ uÞ dx
� 1 ð3Þ

Now we define the recognition function Cg; f ðuÞ as the square
root of the left side of inequality (3) and end up with a
function fulfilling the desired condition (2).

Cg; f ðuÞ ¼
Kg; f ðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ b

0

g2ðxÞ dx �
Z b

0

f 2ðxþ uÞ dx

s ð4Þ

The displacement uC¼max for which the function Cg; f ðuÞ
assumes a maximum yields immediately the section of width
b of the test function f ðxÞ with best matching with the
pattern gðxÞ. This ‘‘best matching section’’ is termed FðxÞ in
the following.

FðxÞ � f ðx� umaxÞ; x 2 ½0; b� ð5Þ

The value of the correlation function Cg;FðuC¼max) at
displacement uC¼max represents a measure for a degree of
coincidence, i.e., the goodness of the matching between a
pattern gðxÞ and the best matching section FðxÞ of a test
function f ðxÞ. However, this measure still does not provide
an absolute measure to compare different test function. For
the necessary refinement we consider the best matching
sections of two different test functions, FðxÞ, and WðxÞ ¼
� � FðxÞ. In this case the correlation function Cg;Fð0Þ equals
Cg;W ð0Þ for both test functions—which is undesirable. A
scaling correction needs to be introduced:

Sg;F ¼

ffiffiffiffiffiffiffiffiffiffi
hF2i
hg2i

s
hF2i � hg2i

ffiffiffiffiffiffiffiffiffiffi
hg2i
hF2i

s
hg2i < hF2i

8>>>>><
>>>>>:

ð6Þ

A generally valid definition of an absolute degree of
coincidence � can now be defined by:

� � Cg; f ðumaxÞ � sg;F ð7Þ

Such defined degree of coincidence can now, be used to
perform statistical analysis of force-extension data sets for
the appearance of a certain pattern. � assumes any value in
the interval 0 � � � 1, where increasing � reflects increas-
ing matching between the best matching section of a test
function and a given pattern. � ¼ 1 is fulfilled if test
function and pattern are identical. Another refinement
improves substantially the resolution of the pattern recog-
nition. This is achieved by reducing the pattern function gðxÞ

and the best matching part of the test function FðxÞ by their
corresponding average values, i.e., hgðxÞi and hFðxÞi and
then calculate the value of the recognition function at
displacement zero Cg�hgi; f�hf ið0Þ. A practical definition of an
objective degree of coincidence � is then given by

� � C2
g�hgi;F�hFið0Þ � sg;F: ð8Þ

The number � assumes positive real values � 1. In the case
of � ¼ 1 the pattern gðxÞ matches perfectly to the section
FðxÞ of the test function f ðxÞ. Squaring Cg�hgi; f�hf ið0Þ in
eq. (10) emphasizes recognition of the exact form of the
pattern. Other definitions of a practical degree of coinci-
dence may have to be considered to improve the resolution
of the recognition and evaluation depending on the nature of
the pattern.

The pattern recognition algorithm needs as input the
pattern gðxÞ it screens the data for. The right choice of gðxÞ is
hence an essential step. Since the unfolding pattern of GFP is
already known from earlier experiments,5) for the following
test we use a simulated trace of GFP unfolding from a
Monte-Carlo simulation17) as our choice for gðxÞ. gðxÞ
corresponds to the section marked in black in Fig. 2(a). The
pattern consists of a cantilever relaxation phase after
unfolding and stretching of a polypeptide whose contour
length has been increased by the length of the number of
amino acids that make up the folded GFP barrel structure,
i.e., 220 amino acids. The contour length gain equals 77 nm,
that is, the contour length of 220 amino acids minus the
initial distance between points of force application.5,12)

As a set of test functions f ðxÞ we chose the complete data
set of a force spectroscopy experiment containing 1012
single force extension traces. The investigated sample was
DdFLN(1–5)-GFP as described above. The pattern recog-
nition algorithm first identifies the best matching sections in
each force trace and then calculates the corresponding value
of the degree of coincidence �. Figure 2(b) shows the
resulting distribution of � values obtained for this data set.

We recognize that � values greater than 0.5 are rarely
observed, while the vast majority of force traces is judged
with very low � values. Figure 3(a) shows four arbitrarily
selected traces with a degree of coincidence between
½0:0; 0:01�. The traces do not show any similarity with the
given pattern. We note that they display hardly any
interactions and/or only slow drift effects. Figure 3(b)
(interval ½0:2; 0:21�) shows traces with somewhat more
interaction patterns with the cantilever, but we still note very
poor similarity with the given pattern. Figure 3(c) (interval

Fig. 2. (a) Simulated force-extension trace. As pattern function gðxÞ we
chose the section marked in black, corresponding to a calculated GFP

unfolding pattern. (b) Distribution of �-values as they have been

calculated for an experimental data set containing 1012 force-extension

traces measured on a modular protein containing a single GFP domain

[DdFLN(1–5)-GFP].
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½0:38; 0:42�) in turn shows traces exhibiting sections with a
certain similarity to the pattern, but still those structures
match poorly the given pattern. Finally, Fig. 3(d) shows
traces from the � interval ½0:55; 1� which exhibit sections
that reproduce very well the given pattern. A manual
analysis of the full data set of 1012 traces reveals that all
force traces exhibiting GFP unfolding events have been
assigned � values greater than 0.55 by the pattern recog-
nition routines.

Thus, we see that the pattern recognition enables filtering
big data sets for traces exhibiting certain patterns. We also
note that for each trace the calculated � factor provides a
quantitative degree of coincidence with a certain pattern.

We apply now the pattern recognition routines to compare
two different data sets of similar size. One date set contains
1012 force extension traces obtained with the DdFLN(1–5)-
GFP fusion protein (see above), while the other data set
contains 934 force extension traces obtained on a different
modular protein which does not contain GFP (Ig27–34 from
human cardiac titin). The pattern we chose for the analysis is
the idealized GFP unfolding pattern from Fig. 2(a). We thus
expect that higher degrees of coincidence (� values greater
than 0.5) should only be observed in the data set obtained on
the sample containing GFP. A superposition and close-up of
the two resulting degree of coincidence distributions is
shown in Fig. 4. We see that the distribution of � values for
the data set measured on the sample lacking GFP falls
rapidly to zero. Only 0.5% of the total number of force
curves have been assigned � values greater than 0.2. The
highest � value is 0.46 and was assigned to only a single
trace. In contrast, we see that the � distribution calculated for
the data set measured on the sample containing GFP falls
much slower to zero. Still 6.4% of the total number of force
curves have been assigned � values greater than 0.2. Nine
traces show pattern matching with a quality of � greater than
0.5. As discussed above, such high � values reflect very
good matching with the pattern.

Thus, we see that the GFP unfolding pattern does only
appear in the data set measured on a sample containing GFP,
while this pattern cannot be found in the data set measured
on a sample lacking GFP. We also find that the frequency of

force traces with intermediate matching to this pattern is an
order of magnitude higher in the data set obtained on the
GFP fusion protein than in the other data set, suggesting that
these more complex patterns result from multiple molecule
interactions of similar mechanical properties that may be
deciphered in the future.18)

It is crucial for noisy single molecule experiments to
develop and apply objective criteria for the selection of data
traces. We have presented such an approach based on
correlation functions.
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